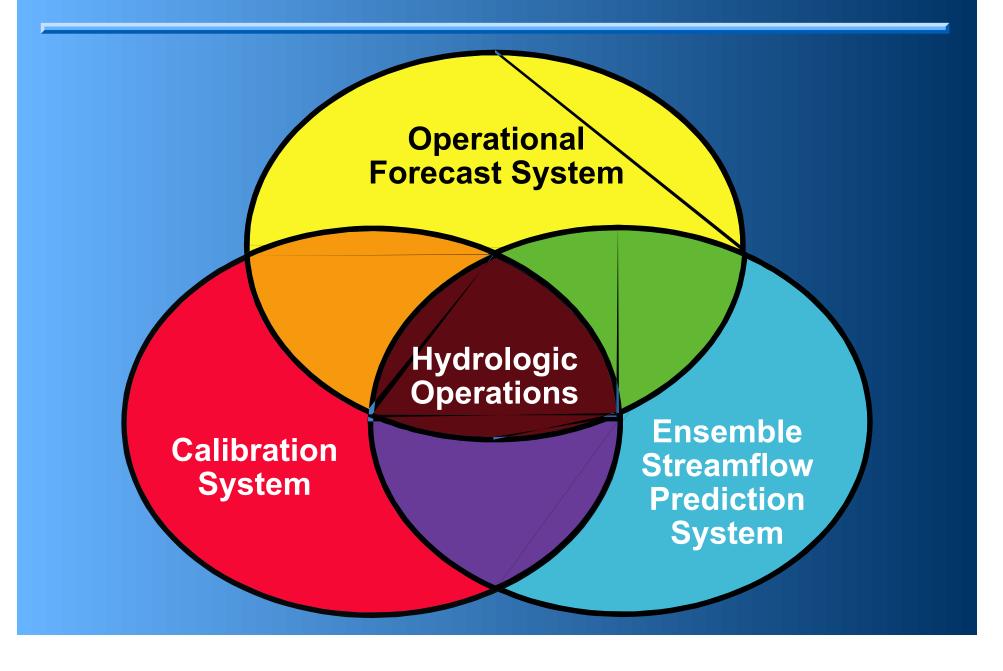
NWSRFS Overview

Functions of a River Forecast System


Data Ingest Data Pre-processing Model Computations Product Dissemination

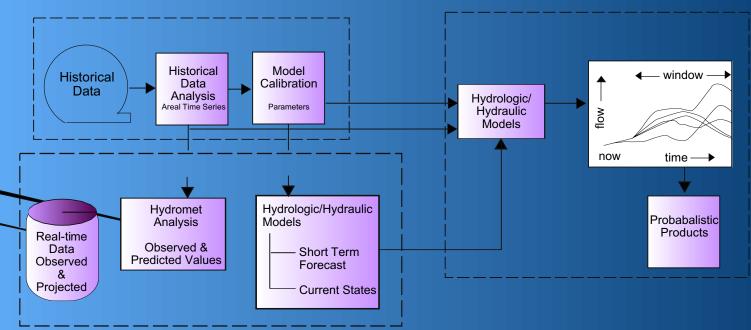
What is NWSRFS?

National Weather Service River Forecast System

- A collection of interrelated software and data stores capable of performing a wide variety of hydrologic/hydraulic functions
- Composed of 3 major functional systems that use the same hydrologic/hydraulic models

Functions of NWSRFS

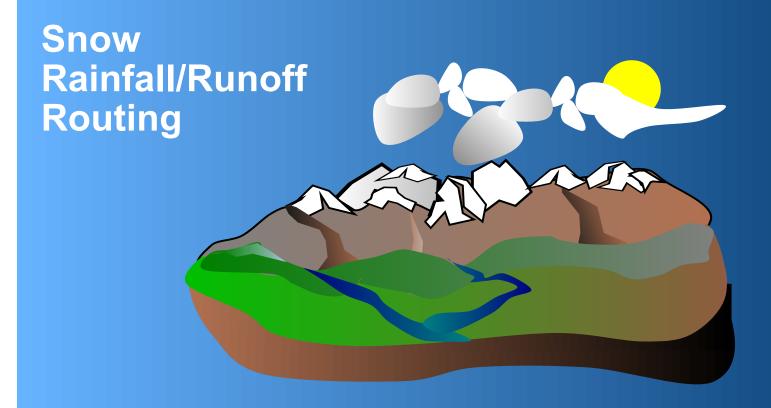
NWSRFS Functional Structure


- Calibration System (CS)
 - Generate time series based on historical data
 - Determine model parameters
- Operational Forecast System (OFS)
 - Uses calibrated parameter values to:
 - Generate short-term river and flood forecasts
 - Maintain model state variables
- Ensemble Streamflow Prediction System (ESP)
 - ▶ Uses current model states and an ensemble of time series to:
 - Generate an ensemble of hydrographs
 - Generate probabilistic short or long-term forecasts

All 3 systems use the same hydrologic and hydaulic models

NWSRFS

Functional Structure



Operational Forecast System (OFS)

River Forecasting

Hydrologic Modeling in NWSRFS

NWSRFS Operation

A software routine describing the equations of motion governing the flow of water through a portion of the hydrologic cycle For example:

- Snow Operation
 - Snow accumulation and melting
- Rainfall/Runoff Operation
 - Water flow on and below ground surface
- River Channel Routing Operation
 - Water movement from one location to another in a river

There are also many utility operations for time series manipulation, plot and tabular displays, etc. in NWSRFS

NWSRFS Operations

- ▶ 1 SAC-SMA Sacramento soil-moisture accounting model
- ▶ 2 UNIT-HG Unit hydrograph
- ► 3 REDO-UHG Reduced order unit hydrograph
- 4 CLEAR-TS Clear time series
- ► 5 SAC-PLOT Sacramento type daily flow plot
- ▶ 6 MEAN-Q Mean discharge computation
- ► 7 LAG/K Lag and K routing
- ▶ 8 CHANLOSS Simplified channel loss/gain
- ▶ 9 MUSKROUT Muskingum routing
- ► 10 ADD/SUB Add and subtract time series
- ► 11 LAY-COEF Layered coefficient routing
- ► 12 INSQPLOT Instantaneous discharge plot
- ▶ 13 TATUM Tatum routing
- ▶ 14 ADJUST-Q Flow adjustment and blend
- ► 15 WEIGH-TS Weight time series
- ► 16 STAT-OME Mean discharge statistics
- ► 17 WY-PLOT Water year daily flow plot
- ► 18 PLOT-TS General time series plot
- ▶ 19 SNOW-17 Hydro 17 snow model
- ▶ 20 CHANGE-T Change time interval
- ▶ 21 DWOPER Dynamic wave routing
- ► 22 SS SAC State-space Sacramento model
- ► 23 STAGE-Q Stage-discharge conversion
- ► 24 API-CONT Continuous API model
- ► 25 PLOT-TUL Tulsa operational plot
- ► 26 RES-SNGL Single reservoir simulation model
- ▶ 27 LIST-FTW Fort Worth tabular display
- ▶ 28 CHANLEAK Conceptual channel loss model
- ► 29 API-MKC Kansas City API rainfall-runoff model
- ► 30 MERGE-TS Merge time series
- ▶ 31 SNOW-43 State-space snow model

- ► 32 FFG Flash flood guidance
- ► 33 API-CIN Cincinnati API rainfall-runoff model
- ▶ 34 API-SLC Salt Lake City API rainfall-runoff model
- ► 35 API-HAR Harrisburg API rainfall-runoff model
- ► 36 XIN-SMA Xinanjiang soil-moisture accounting
- ► 37 LIST-MSP Minneapolis tabular runoff display
- ► 38 BASEFLOW Baseflow simulation
- ► 39 LOOKUP Table lookup (2-variable)
- ► 40 WATERBAL Water balance display
- ► 41 API-HAR2 Harrisburg API rainfall-runoff model #2
- ► 42 RSNWELEV Rain-snow elevation
- ► 43 API-HFD Northeast RFC API rainfall-runoff model
- ► 44 SARROUTE SSARR multi-phase routing
- ► 45 DELTA-TS Change in time series values
- ► 46 NOMSNG Generate no missing value time series
- ► 47 PEAKFLOW Comparison of peak flows
- ► 48 MULT/DIV Multiply and divide time series
- ► 49 BEGASSIM Begin assimilator loop
- ► 50 ASSIM Assimilator updating
- ► 51 SSARRESV SSARR reservoir regulation
- ► 52 SUMPOINT SSARR summing point
- ► 53 LOOKUP3 Table lookup (3-variable)
- ► 54 SWB-NILE Simple water balance model
- ► 55 FLDWAV Generalized Flood Wave Routing
- ▶ 56 GLACIER AKRFC Glacier model
- ► 57 CONS_USE Consumptive Use model
- ▶ 59 TIDEREV Tide balance review
- ▶ 60 ADJUST-T Tide adjustment

► 58 RES-J Joint reservoir model

- ► 61 STAGEREV Review stage
- ► 62 ADJUST-H Stage adjustment

History Highlights

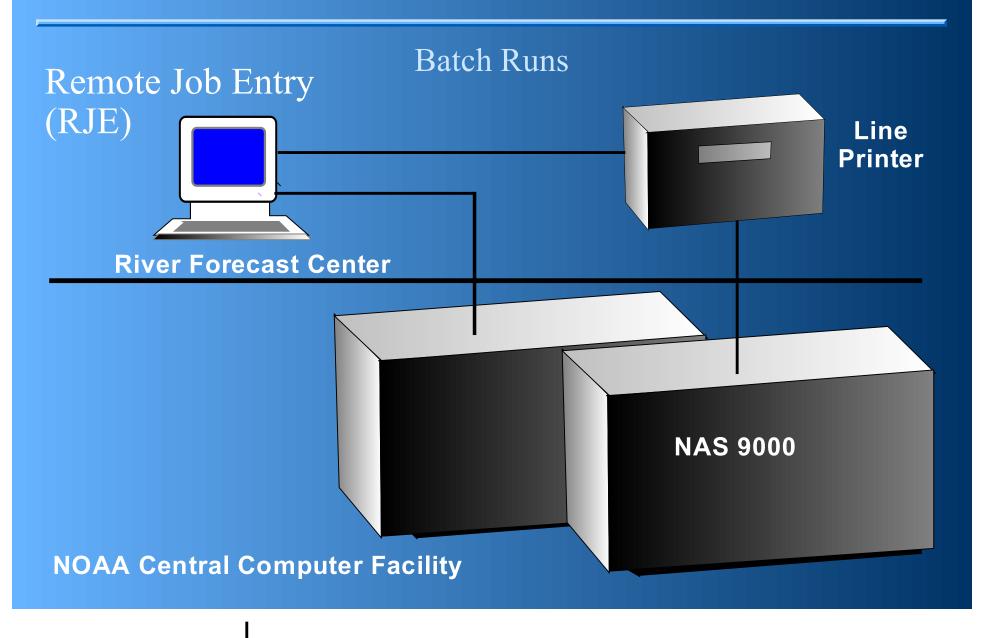
- Early 1970s First components developed CALB - MAP, MAT, MCP, OPT
- Mid-late 1970s NWSRFS Versions 1-4
- 1979-83 Version 5 developed -first field test ABRFC
- 1985 OFS general release on mainframe at CCF
- 1989-91 port of OFS to UNIX; development of Interactive Forecast Program (IFP)
- 1997 Interactive Calibration Program (ICP) released
- 1998 Ensemble Streamflow Prediction Analysis and Display Program (ESPADP) released

NWSRFS Version 5

Functional Requirements

- Allow for a variety of models and procedures.
- User controls selection of models and method of use.
- Easy to add new models and procedures to keep up with science and technological changes.
- Efficiently process large amounts of data to produce forecasts at hundreds of locations for each RFC.
- Flexible user control of real-time processing.

Current Status


Implementation

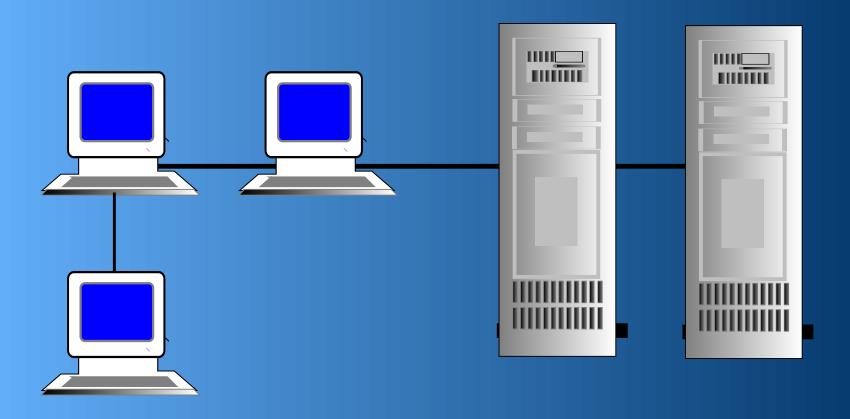
- ► US 13 River Forecast Centers ~4000 Forecast Points
- ▶ 5 additional countries (China, Czech Republic, Mexico, Panama, South Africa)
- ▶ Plans for 2 more countries (Honduras, Venezuela)

Features

- ▶ 62 Operations recent additions include RES-J and FLDWAV
- Current work on expanding ensemble forecast capabilities
- Automated model updating
- ► Interactive calibration, operational model control, and ensemble analysis

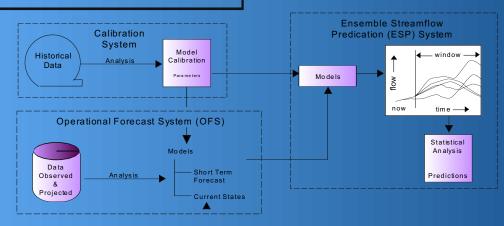
Pre-AWIPS NWSRFS

NWSRFS Version 5


Line Printer Output

hpterm			_ B ×
			Α
			П
	1002 Man Dinie	+++ T7707 T777 T877 T877 T87	Ц
DARLINGTON - PECATONICA RIVER		*** ENGLISH UNITS ***	
A = DARNC QINE (CFS)	OBSERVED FLOW $F = FLOOD$ STAGE ADJUSTED FLOW $U = RATING$ UPPER		
	SIMULATED FLOW M = MAX OF RECOR BASEFLOW		
FLOOD STAGE = 11.0	FLOOD FLOW = 6000.0	MAX OF RECORD STAGE = 20.7	
	BANKFULL STAGE = -999.0 FCST CRITERIA = DAMA SOMA HWFF	FLOW = 52000.0 DATE = 7-16-1950	
TOTAL AREA = 779.0	LOCAL AREA = 779.0	FLOW = 52000.0 $DATE = 7-16-1950$ $COMMENTS =$	
STAGE2.00 12.8 DA HR RAIM ADJ-Q STAGE 0.0 10000.0	$egin{array}{cccccccccccccccccccccccccccccccccccc$	SIM-Q RUNOFF FEIX PSRO SIM-WE	
29 11 0.00 192. 2.3 0 F I	i i u i	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
29 23 0.00 173. 2.2 0 F I 30 5 0.00 164. 2.1 0 F I 30 11 0.00 157. 2.1 0 F I 30 23 0.00 154. 2.0 0 F I 31 5 0.00 150. 2.0 0 F I 31 11 0.00 149. 2.0 0 F I 31 11 0.00 149. 2.0 0 F I		188. 0.00 0.07 0.00 6.00	
29 23 0.00 173. 2.2 0 F I 30 5 0.00 164. 2.1 0 F I 30 11 0.00 157. 2.1 0 F I	i i ü i	176. 0.00 0.10 0.00 6.00	
30 11 0.00 157. 2.1 0 F I 30 17 0.00 154. 2.0 0 F I 30 23 0.00 152. 2.0 0 F I		165. 0.00 0.10 0.00 6.00 158. 0.00 0.10 0.00 6.00	
30 23 0.00 152. 2.0 0 F I 31 5 0.00 150. 2.0 0 F I	I I U I I U I	154. 0.00 0.10 0.00 6.00	
31 5 0.00 150. 2.0 0 F I	I I U I	152. 0.00 0.10 0.00 6.00	
31 11 0.00 149. 2.0 0 F I 31 17 0.00 148. 2.0 0 F I	I I U I	150. 0.00 0.10 0.00 6.00 149. 0.00 0.10 0.00 6.00	
31 23 0.00 148. 2.0 0 F I	T T II T	148. 0.00 0.10 0.00 6.00	
31 23 0.00 148. 2.0 0 F I 1 5 0.00 148. 2.0 0FI-	<u>Î</u> <u>Î</u>	148. 0.00 0.10 0.00 6.00	
1 11 0.00 148. 2.0 A F I 1 17 0.00 148. 2.0 A F I		148. 0.00 0.10 0.00 6.00 148. 0.00 0.10 0.00 6.00	
1 11 0.00	i i u i	147. 0.00 0.10 0.00 6.00	
1 23 0.00 147. 2.0 A F I 2 5 0.00 148. 2.0 A F I 2 11 0.09 164. 2.1 A F I 2 17 0.40 334. 3.2 A F I 2 23 0.40 1077. 5.7 BA F I	I I U I	148. 0.00 0.10 0.07 6.00	
2 11 0.09 164. 2.1 A F I 2 17 0.40 334. 3.2 A F I	I I U I	$164. \qquad 0.01 \qquad 0.25 \qquad 0.07 \qquad 5.91 \ 334. \qquad 0.05 \qquad 0.40 \qquad 0.11 \qquad 5.51$	
2 23 0.40 1077. 5.7 BA F I		1077. 0.09 0.54 0.21 5.11	
4 5 H. 44 27H5. 8.2 B 8 F T		2705. 0.13 0.69 0.37 4.78	
3 11 0.33 5108. 10.4 B AF I 3 17 0.38 8492. 12.2 B F A I	1 1 U 1 1 U 1	5108. 0.20 0.77 0.59 4.45 8492. 0.34 0.84 0.89 4.07	
2 02 0 20 12200 12 0 D D T T	A I I U I	13392. 0.32 0.92 1.00 3.75	
3 23 0.32 13392. 13.9 B F I 4 5 0.26 18428. 15.2 B F I	AI I U I	18428. 0.27 1.00 1.00 3.49	
4 11 0.32 21446. 15.9 B F I 4 17 0.42 23444. 16.3 B F I	I U I A I I	21446. 0.32 1.00 1.00 3.17 23444. 0.43 1.00 1.00 2.74	
4 23 0.28 25913. 16.7 B F I		25913. 0.28 1.00 1.00 2.47	
3 23 0.32 13392 13.9 B F I 4 5 0.26 18428 15.2 B F I 4 11 0.32 21446 15.9 B F I 4 17 0.42 23444 16.3 B F I 4 23 0.28 25913 16.7 B F I 5 5 0.18 27094 16.9 B F I 5 11 0.20 25287 16.6 B F I	I A I U I	27094. 0.19 1.00 1.00 2.29	
4 5 0.26 18428. 15.2 B F I 4 11 0.32 21446. 15.9 B F I 4 17 0.42 23444. 16.3 B F I 4 23 0.28 25913. 16.7 B F I 5 5 0.18 27094. 16.9 B F I 5 11 0.20 25287. 16.6 B F I 5 17 0.38 22806. 16.1 B F I	I A I U I	25287. 0.20 1.00 1.00 2.09 22806. 0.38 1.00 1.00 1.71	
5 23 0.20 22357. 16.1 B F I	IA I U I	22357. 0.21 1.00 0.99 1.51	
6 5 0.09 22318. 16.0 B F I	I A I Ū I	22318. 0.10 1.00 0.99 1.41	
0			
			∇

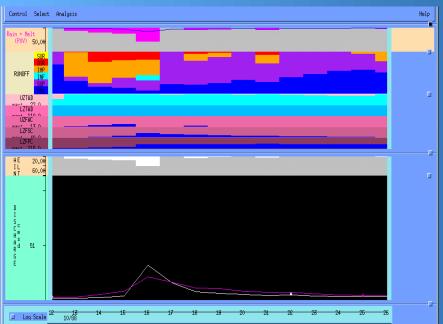
Transition to AWIPS


Local Processing

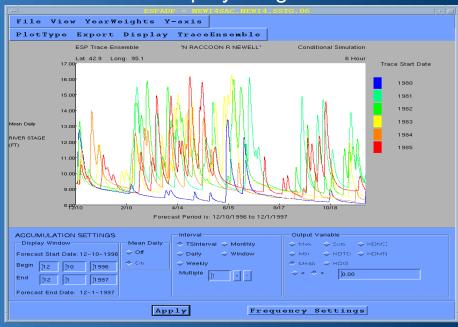
Networked File Servers and Scientific Workstations

Modernized NWSRFS

Interactive Calibration Program



Ensemble
Streamflow
Prediction
Analysis &
Display Program


Interactive Forecast Program Interactive Forecast Program

Interactive Calibration Program

Ensemble StreamflowPrediction Analysis & Display Program

Organization of NWSRFS Users Manual

Highlighting OFS and ESP information

- General Information
- II. Model/Procedure Description Scientific Information
- III. Historical Data Access and Analysis User Information
- IV. Model Calibration -User and Guideline Information
- V. Operation Definition Information
- VI. OFS and ESP User Information
 - VI.3 Initialization Programs
 - VI.4 Data Entry
 - VI.5 FCST/HCL
 - VI.6 Utility Programs

Organization of NWSRFS Users Manual

Continued

VII. Calibration - System Documentation

VIII. Operations - System Documentation

IX. OFS/ESP - System Documentation

X. RFC Application Software Information

Online documentation at:

http://hsp.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/htm/formats.htm

